Type 1 Diabetes and Exercise

Tariq Ahmad, M.D.
Children’s Hospital Oakland & Research Institute
Presenter Disclosure Info

• I have no financial relationships pertinent to this presentation to disclose.
Objectives

- Understand the basic physiology of glucose and insulin with exercise
- Understand ways to prevent high and low BG’s during and after exercise
Normal Physiology
Ying and Yang

Glucagon

Insulin
Physiology of Fasting

- Insulin goes down
 - Glucose doesn’t enter tissues
 - Liver pushes glucose into the blood via glucagon
Quick segue on ketones

- **Ketosis**
 - Physiologic occurrence during times of starvation and liver has depleted its glycogen stores

- **Ketoacidosis**
 - Not good
 - Ketones have accrued to a point that it has made the blood acidotic and subsequent clinical deterioration ensues
• Eat carbs \rightarrow insulin goes up.
 – Insulin stops liver from putting sugar in the blood and moves sugar into muscle, liver, and fat.
Physiology of Exercise

- Insulin is suppressed
- Glucagon and catecholamines cause glucose to move from liver to blood
- Catecholamines can make it harder for glucose to enter muscle
Tanks of Sugar

- Insulin independent mechanisms stimulate glucose uptake in the muscle.
- Liver and muscles provide glucose to keep a steady fuel source using glucagon.

Our defense against hypoglycemia

Pancreas Response
↓ Insulin
↑ Glucagon

~ 72-108 mg/dL

Autonomic Response
Shaky
Palpitations
Anxious
Sweating
Hunger
Numbness

~ 65-70 mg/dL

Brain Alert
Warmth
Weakness
Fatigue
Confusion

~ 50-55 mg/dL

Warmth
Weakness
Fatigue
Confusion
Our defense against hypoglycemia - Summary

- Decrease Insulin
- Increase Glucagon
- Increase of counter-regulatory hormones
The issues with diabetes type 1

- Can’t decrease the insulin once it’s given.
- Glucagon release may be impaired.
- Adrenaline response can be attenuated in type 1 diabetes.
- And yet adrenaline can also increase BG’s.

So you are susceptible to lows and highs!
Diabetes and Exercise

- Insulin is already in the body
 - Glucose goes into muscle more easily
- Glucagon is impaired
Effects of exercise on Type 1 teens

n = 50 children and teens
Exercise: 4x15 min treadmill periods with 3 x 5 minute rest periods at VO$_{2\text{max}}$ of 60%

Diabetes Care, Vol 29, Number 1, January 2006
Hypoglycemia overnight

- 2x as many kids aged 11-17 years old had a low BG overnight after an exercise day compared to when they had no exercise (Tsalikian et al, 2005).

\[n = 50 \text{ children and teens} \]

Exercise: 4x15 min treadmill periods with 3 x 5 minute rest periods at VO\(_{2\text{max}}\) of 60%
Hypoglycemia the night after exercise

- McMahon et al. noted that glucose needs to maintain targets may be increased not only during exercise but 7-11 hrs after.

n = 9 teens

Exercise: 4 pm 45 min on cycle at 50% VO_{2max}
And the next day…

- Adrenaline response to hypoglycemia was blunted the day after low or moderate exercise.

n = 27 adults with type 1 DM

Exercise: 2 groups either VO$_{2\text{max}}$ of 30% or 50% had two bike sessions 90 min each with a 180 min rest period.
Adrenaline effect is gone

Muscle + Insulin Liver + Glucagon

Glucose in the Blood
Hyperglycemia?

- Too many carbs
- Too little insulin, or disconnecting
- Short periods of intense exercise can cause adrenaline responses which can last up to 2 hours in adults with type 1 DM (Marliss et al, 2002)
So why exercise?

- Reduces risk of:
 - Heart attacks
 - Stroke
 - High cholesterol
 - High blood pressure
 - Increase life expectancy
- Increases team comaraderie
- Improves mental health and self-confidence
“People with diabetes should be advised to perform at least **150 min/week of moderate-intensity aerobic physical activity** (50–70% of maximum heart rate), spread over at least **3 days per week** with no more than 2 consecutive days without exercise. (A)"
Athletes with Type 1 Diabetes

Gary Hall Jr
Wasim Akram
Mimmi Hjorth
Chris Dudley
Sir Steve Redgrave
Jason Johnson
Bill Carlson
Hypoglycemia and teens

Baseline BG level (mg/dl)

- <120: 86%
- 120-180: 13%
- >180: 6%

Hypoglycemia risk (% of subjects)

Diabetes Care, Vol 29, Number 1, January 2006
BG Targets

Non-diabetic
70
140
200

Diabetic
70
80
180
200

Diabetic during exercise
70
80
120
140
200
Factors affecting response to exercise

- Duration and Intensity
- Type of activity
- Metabolic control
- BG level
- Type and timing of insulin injections
- Type and timing of food
- Absorption of insulin
Types of Activity

- Most team sports have repeated bouts of intensive activity interrupting longer periods of low to moderate-intensity activity of rest.
 - Has less fall of BG compared to continuous moderate-intensity exercise
Anerobic vs Aerobic

- Period of maximal O_2 use
- Anaerobic is only a short time, sometimes seconds
- Lack of O_2 causes lactate formation
- BG rises lasting typically 30-60 min
 - Adrenaline
 - Glucagon

- Aerobic tends to lower BG both during (usually within 20-60 min after onset) and after the exercise
Typical Aerobic Exercise

Exercise

Glucose Appearance ↑
Glucose Utilization ↑↑

Recovery

Glucose Appearance ↔
Glucose Utilization ↑↑
Riddle me this…

• With 10 s of maximal exercise (> VO$_{2peak}$) there is a transient increase in BG for up to 2 hours after exercise (Bussau VA, 2006)

\[\text{n = 7 T1DM males (age 21±4)} \]

Exercise: cycling at 40% VO2 max x 20’ followed by rest or 10 second max sprint
Intermittent high intensity vs continuous moderate intensity

Effect of 30 min (represented by box) of MOD (•) or IHE (○) on rate of endogenous glucose production (Ra; A) and rate of glucose utilization (Rd; B).

Less glucose needed for IHE in early “recovery” phase, but once adrenaline is back to baseline, glucose needs increased again, to restore glycogen stores.

n = 13 adults with type 1 DM

Exercise: IHE – continuous cycle at 40% \(\text{VO}_2\text{max} \) for 30 min interspersed with 4 s max sprint every 2 min

MOD – 30 min cycle at 40% \(\text{VO}_2\text{max} \)

Increased adrenaline inhibits muscle glucose uptake at rest and during exercise and promotes liver glucose production
- Shown that 10-15 min at > 80% VO$_{2\text{max}}$ increases BG appearance more than utilization

GH levels, cortisol, and lactate increase

Build up of intramuscular glucose-6-phosphate

Diabetics have no insulin response to bring BG’s back down during recovery
Typical Aerobic Exercise Revisited

- Exercise:
 - Glucose Appearance \uparrow
 - Glucose Utilization \uparrow

- Recovery:
 - Glucose Appearance \leftrightarrow
 - Glucose Utilization \uparrow
Aerobic exercise followed by short sprint

10 sec sprint

Glucose Appearance $\uparrow \uparrow \uparrow$
Glucose Utilization $\downarrow \downarrow$

Exercise

Glucose Appearance \uparrow
Glucose Utilization \uparrow

Recovery

Glucose Appearance \leftrightarrow
Glucose Utilization \uparrow
Aerobic exercise followed by short sprint

Glucose Appearance \uparrow Glucose Utilization \uparrow

Glucose Appearance \uparrow Glucose Utilization \uparrow

Glucose Appearance $\uparrow\uparrow\uparrow$ Glucose Utilization $\downarrow\downarrow$

10 sec sprint

Exercise

Recovery

After 2 hrs
Resistance Exercise vs Aerobic Exercise

- Resistance exercise relies more on lipids for fuel and has greater increase in GH levels, and lactate levels which increase gluconeogenesis, and increased catcholamines which augments glycogenolysis.

n = 12 adult type 1 DM

Exercise: aerobic - treadmill at 60% VO_{2max} x 45 min

Exercise: resistance - 3 sets of 8 repetitions with 90 sec rest in between sets x 45 min
Performing resistance exercise prior to aerobic exercise improves glycemic stability throughout the exercise and reduces duration and severity of hypoglycemia after, but notably not number of hypoglycemic events.

Yardley J E et al. Dia Care 2012;35:669-675
Metabolic control

• When control is bad, circulating insulin may not be enough, and counter-regulatory hormones may be exaggerated
 – Ketosis
• High BG associated with reduced beta-endorphins during exercise
Timing of Insulin

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Serum Insulin Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>0 (baseline)</td>
</tr>
<tr>
<td>0</td>
<td>0 (baseline)</td>
</tr>
<tr>
<td>60</td>
<td>0 (baseline)</td>
</tr>
<tr>
<td>120</td>
<td>0.2 mU/min/kg insulin infusion</td>
</tr>
<tr>
<td>180</td>
<td>0.4 mU/min/kg insulin infusion</td>
</tr>
<tr>
<td>240</td>
<td>0.6 mU/min/kg insulin infusion</td>
</tr>
<tr>
<td>300</td>
<td>0.8 mU/min/kg insulin infusion</td>
</tr>
<tr>
<td>360</td>
<td>1.0 mU/min/kg insulin infusion</td>
</tr>
<tr>
<td>420</td>
<td>1.2 mU/min/kg insulin infusion</td>
</tr>
<tr>
<td>480</td>
<td>1.4 mU/min/kg insulin infusion</td>
</tr>
</tbody>
</table>

Insulin Lispro (n=10)

Injection

Mean + SE
Type and timing of food

- 3-4 h prior to competition meals with fat, carbs, and protein
- Faster acting glucose just prior to exercise or within an hour to help build glycogen stores faster
Absorption of insulin

- Choice of site
 - Avoid extremity which will be used
- Ambient temperature
 - Increases metabolic demands and greater potential for BG drop
Other considerations

- More muscles used
 - Greater drop
- Weight bearing vs non-weight bearing
 - Greater drop
- Adrenaline, being amp’ed up
 - Increase in BG
- Mornings have higher counter-regulatory hormones
 - May have less likelihood of lows
 - More likelihood for ketosis
- Sports unfamiliar with may have more likelihood of low
Things to keep in mind…

• Newly diagnosed kids appear to be protected from severe hypoglycemia (Davis EA, et al, 1997)

• The lower the HbA1c, the greater the likelihood of lows, especially below 8%
 – Rate doubled if < 8%, tripled if < 7%

• Younger children were most susceptible if less than 6 years old.
Prevention

• Remember effects of alcohol
 – Impairs liver’s ability to make glucose by gluconeogenesis (not glycogenolysis)
• Remember to hydrate
 – In general, whatever you sweat and lose with breathing needs replacement
 – As much as 1.3 L an hour in teens
Filling the tank...
Exercise and Liver stores of glucose
Carbs before exercise

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Duration</th>
<th>< 20 minutes</th>
<th>20-60 minutes</th>
<th>> 60 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60% of Maximal Heart Rate</td>
<td>< 20 minutes</td>
<td>15 g</td>
<td>30 g/h</td>
<td></td>
</tr>
<tr>
<td>60 - 75%</td>
<td>< 20 minutes</td>
<td>15 g</td>
<td>30 g</td>
<td>75 g/h</td>
</tr>
<tr>
<td>> 75%</td>
<td>< 20 minutes</td>
<td>30 g</td>
<td>75 g</td>
<td>100 g/h</td>
</tr>
</tbody>
</table>

- Insulin dosage: - 20% - 30%

Grimm et al. Diabetes Metab 2004; 30: 465-70
Reducing pre-exercise insulin for meals

<table>
<thead>
<tr>
<th>Exercise intensity (% VO2max)</th>
<th>% Dose reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 min of</td>
</tr>
<tr>
<td></td>
<td>60 min of</td>
</tr>
<tr>
<td>25</td>
<td>25*</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

*Extrapolated.

Estimated number of min covered by 15 grams of extra carb and no change in basal activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Body mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Cycling</td>
<td></td>
</tr>
<tr>
<td>10 km/h</td>
<td>65</td>
</tr>
<tr>
<td>15 km/h</td>
<td>45</td>
</tr>
<tr>
<td>Walking</td>
<td></td>
</tr>
<tr>
<td>4 km/h</td>
<td>60</td>
</tr>
<tr>
<td>6 km/h</td>
<td>40</td>
</tr>
<tr>
<td>Swimming</td>
<td></td>
</tr>
<tr>
<td>30 m/min breast stroke</td>
<td>55</td>
</tr>
<tr>
<td>Tennis</td>
<td>45</td>
</tr>
<tr>
<td>Cross-country ski</td>
<td>40</td>
</tr>
<tr>
<td>Basketball (game)</td>
<td>30</td>
</tr>
<tr>
<td>Snow shoeing</td>
<td>30</td>
</tr>
<tr>
<td>Soccer</td>
<td>30</td>
</tr>
<tr>
<td>Figure skating</td>
<td>25</td>
</tr>
<tr>
<td>Ice Hockey (ice time)</td>
<td>20</td>
</tr>
<tr>
<td>Running</td>
<td></td>
</tr>
<tr>
<td>8 km/h</td>
<td>25</td>
</tr>
<tr>
<td>12 km/h</td>
<td>20</td>
</tr>
</tbody>
</table>

Riddell et al, 2006
Carbing Up

- In general, 1.5 g CHO/kg/hr
- Gatorade is about 6% glucose
- G2 is about 2% glucose
- Generally drinks > 8% is too much
 - Juice is about 11% glucose
 - Slows gastric absorption
- Powerade is about 8% glucose
Exercise without Insulin

- Glucose can’t get into muscles, so muscles make lactate
 - Cause cramping and fatigue
- Lack of insulin causes ketone formation
Why is “no insulin” bad?

• Uninhibited action of counterregulatory hormones cause BG to rise further (Wahren et al, 1978)

• Impaired glucose uptake in muscles from lack of insulin and increased ketones can cause acidosis, abdominal pain, nausea and vomiting

• So if urine ketones are moderate or more, or serum ketones > 0.5 mmol/L hold off exercise
 – Serum ketones normalize faster than urine ketones
 – Precision Xtra glucometer can measure both ketones and glucose
Suspending basal rates on pumps

BG < 70 mg/dL

16% 43%

n = 50 children and teens
Exercise: 4x15 min treadmill periods with 3 x 5 minute rest periods at VO$_{2\text{max}}$ of 60%

Insulin Pumps

- Do not disconnect for > 2 hours
- May need to reduce basal 90 min prior to exercise.
- After reconnecting, may need to correct with 50% of usual dose.
- Can use temp basals, before, during, and after exercise.
Recovery

• Quickly provide carbs post-exercise to rebuild glycogen stores within the first few hours
 – Take advantage of the heightened insulin sensitivity
 – Adding protein helps with glycogen formation

• For short duration high intensity anaerobic activities (weight lifting, sprints, diving, and baseball), you can have delayed drops and may only need carbs after activity
 – Remember, opposite for aerobic or mixed (soccer, cycling, jogging, and swimming)
 • Use carbs before, during, and after
Practical points

• Always have a form of glucose readily available
• On activities, buddy system
• On hikes, if possible, use groups of four minimum
• Have at least one person who knows how to use glucagon
• Remember to remind athlete to not keep insulin in direct sunlight or warm temperatures

• Keep meter and strips close to skin and insulated when skiing
• Higher altitudes may increase BG’s
 – Skeletal muscle insulin resistance
 – Increased adrenaline
Troubleshooting

<table>
<thead>
<tr>
<th>Hypoglycemia</th>
<th>Hyperglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Too much insulin (bolus and/or basal)</td>
<td>Too little insulin</td>
</tr>
<tr>
<td>Not enough carbs, or carbs not given at right time</td>
<td>Too many carbs</td>
</tr>
<tr>
<td>Higher intensity aerobic exercise (>50-75% VO$_{2peak}$) or prolonged (more than 30-60 min)</td>
<td>Short, intermittent bouts of anaerobic exercise</td>
</tr>
<tr>
<td>Not well trained</td>
<td>Emotions, adrenaline</td>
</tr>
</tbody>
</table>
Signs & Symptoms

- **Hypoglycemia**
 - Shaky
 - Fast heartbeat
 - Sweating
 - Anxious
 - Dizzy
 - Hunger
 - Impaired vision
 - Fatigue
 - Headache
 - Irritable

- **Hyperglycemia**
 - Frequent urination
 - Increased thirst
 - Blurred vision
 - Fatigue
 - Headache
 - Hunger
 - Nausea
Red Flags

- **Hypoglycemia**
 - Glazed look
 - Incoherent
 - Unresponsive
 - Pale

- **Hyperglycemia**
 - Fruity-smelling breath
 - Nausea and vomiting
 - Shortness of breath
 - Dry mouth
 - Weakness
 - Confusion
 - Coma
 - Abdominal pain
What to do for hypoglycemia

- With symptoms, check the BG
- If < 80 mg/dL, treat with 15 grams of fast acting carbs (ie juice, glucose tabs, gels)
- Re-check in 10 minutes, if still < 80 mg/dL repeat 15 grams of fast acting carbs
- If > 80 mg/dL give 15 grams of slow acting carbs (ie snack bar, powerbar, trail mix) and go and play
- Remember to give around 15 grams of fast acting carbs for every 30 minutes of play but may need more depending on activity
- If unresponsive, unable to swallow, or SEIZURE, 1 mg of glucagon given IM (remember to mix powder with liquid)
 - Patient’s BG should increase within 10 min, but patient may throw up from the glucagon
- Let parents know so they can give extra carbs at bedtime and check BG’s overnight
What to do for hyperglycemia

- Check the BG
- Target BG to be < 200 mg/dL
- If > 250 mg/dL check for ketones, but keep in mind, you can still have ketones with normal or low BG’s
- If there are moderate to large ketones, sub out, hydrate, give insulin
- If no ketones, use insulin scale but give 50% of what they normally use, may need even less for some activities
- If they are unconscious or vomiting with elevated BG, call 911, or take to the ER.
Good things to have on hand

- Glucagon
- Fast acting glucose
- Meter and strips
- Serum ketone meter
- Insulin and needles
- Water
- Snack bar (mixed protein/fat/carbs)
- Doctor’s phone numbers
- Parent’s phone numbers
- Don’t need to have it, but good if the athlete has a paper with their doses.
Let’s sum up…

• Reduce pre- and post-exercise insulin boluses
• Reduce/suspend basal 1-hr pre-exercise
• Carb up before exercise, make sure glycogen stores are replete
 – May want to mix low glycemic index foods with fast acting carbs
 • Remember powerbars may take 30 min before BG rises
 – In general, 15 grams for every 30 min
• For daylong activities (camp, long distance walking, skiing, water sports) consider 30-50% reduction in long acting insulin or basal the night previous and following night
• Check BG’s before exercise and every 30 min or so during exercise if possible
Let’s sum up…

• Bursts of anaerobic (high intensity) activity before or after.
• Weight training before conditioning.
• Exercise in AM instead of PM.
• To prevent overnight hypoglycemia
 – Bedtime snack (low glycemic index) if BG < 120 mg/dL
 – Lower overnight basal (by 20-30%)
 – Reduce pre-dinner bolus (with PM exercise)
 – Exercise in AM instead of PM
• Consider a serum ketone meter
• Keep accurate records 😊
So......

- Carb up hours before the exercise
 - Consider a fraction of insulin to cover
- Check BG just prior to exercise
 - <120 give free carbs
 - 120-200 consider carbs but give a fraction of insulin
 - >200 correct by 50%
- During the exercise
 - 15 grams for every 20-30 min of exercise
 - Check BG’s every 30-40 min
- After the exercise
 - Replete carbs
 - Consider a fraction of insulin to cover

- Before bed
 - Check BG (pumpers consider decreasing rates with temp basals)
 - <80 give juice/tabs
 - 80-120 give free carbs
 - 120-200 if carbs are eaten give a fraction of insulin and correct by 50%
 - >200 correct by 50%
 - >250 check for ketones
- Overnight
 - Consider checking at 2 AM if BG < 120 at bedtime and no carbs were given or if there were ketones
Childrens Hospital Oakland and Research Institute
Division of Endocrinology

- Diabetes Nurses
 - Kathy Love (R.D)
 - Barb King-Hooper
 - Lois Carelli
 - Veronica Monti
 - Victor Woolworth
 - Rosibel Silva
- Endocrine Nurses
 - Anita Markoff
 - Andrea Pederson
- Research Nurse
 - Betty Flores
- Social Workers
 - Amy Warner
 - Kristin Avicolli
 - Karen West
- Office Staff
 - Kim Lawas
 - Juliet Miller
 - Sherita Joseph
- Physicians
 - Jenny Olson
 - Ivy Aslan
 - Sonali Belapurkar
 - Alison Reed
 - Tariq Ahmad
THANK YOU